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DEPTH ESTIMATION EXPLOITING LIGHT FIELDS

A SUPERVISED LEARNING BASED DISPARITY ESTIMATION SCHEME

EXPERIMENTS AND ANALYSIS

 Three	categories	of	methods:	
• Based	on	SAI	(Sub-Aperture	Images):	Patch-based	block	matching
• Based	on	EPI	(Epipolar Plane	Images): Slope	is	proportional	to	the	disparity	value
• Based	on	refocused	images

Our	algorithm	can	be	also	naturally	integrated	into	 a	light	
field	view	synthesis	pipeline,	 since	it	is	able	to	infer	disparity	
information	for	a	view	that	the	color	information	is	unknown.	

GRAPH SIGNAL PROCESSING : GRAPH TRANSFORMS

The	effectiveness	of	data-driven	algorithms	
significantly	depends	on	the	quality	and	the	
quantity	of	training	data.	

Existing	synthetic	 datasets
• MIT	Light	Field	Archive

(without	ground	truth	disparity/depth	values)
• HCI	Light	Field	Dataset (dense	light	fields only)

Our	proposed	datasets
• Sparse	Light	Field	Dataset	(SLFD):	53	scenes	

with	 disparity	range	[−20,20]	
• Dense	Light	Field	Dataset	(DLFD):	43	scenes	

with	 disparity	range	[−4,4]	

Method	
v Deep	learning	based	cascaded	framework.	
v A	pre-trained	FlowNet 2.0	is	fine-tuned	by	pairs	of	

stereo	images,	and	the	obtained	model	is	used	to	
estimate	disparity	between	pairs	of	anchor	views,	
arranged	horizontally	or	vertically.	

v These	coarse	estimates	are	then	fused	at	each	
anchor	viewpoint	by	exploiting	the	warping	error	
from	other	anchor	viewpoints.	

v Multi-scale	residual	learning	for	the	refinement	of	
the	fused	disparity	map.	

v The	propagation	of	disparity	from	anchor	viewpoints	
towards	other	viewpoints	is	performed	by	an	
occlusion-aware	soft	3D	reconstruction	 method	[5].	

Purpose	of	the	scheme
• Handle	either	a	dense	or	a	sparse	light	field	for	

disparity/depth	estimation	based	on	4	corner	
views.	

• Generate	one	disparity	map	for	each	light	field	
view.

EXPERIMENTAL RESULTS
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Fig. 4. Examples of scenes from our two datasets, the 1st and 2nd rows
show three scenes and the corresponding disparity maps from SLFD, while
the 3rd and the 4th rows show three examples of scenes and the corresponding
disparity maps from DLFD.

pair are separated by an angular distance corresponding to
a view index difference l 2 [2, 3, ...8] for dense light fields,
which corresponds to a disparity range within [-32,32] pixels,
whereas for sparse light fields, this distance is set to be
l 2 [1, 2, 3], corresponding to a disparity range within [-60,60]
pixels. In both cases, the extraction of views is done in such
a way that the different distances (or disparities) are well
represented (with same probability) in the training data.

B. Data augmentation

The authors in [8] [17] performed geometrical and chro-
matic transformations to increase diversity in the training data.
In our experiments, however, we have found that geometrical
transformations such as rotation, translation or scaling that
involve data interpolation bring extra errors in the ground truth
disparity values, and thus harm the learning convergence. As a
consequence, only chromatic transformation has been applied
by changing the hue, saturation, contrast and brightness of
training images. Concretely, we convert the images from the
RGB space to the HSV space, add an offset to the hue and
saturation channels, and then convert the images back to RGB
color space. The hue and saturation offsets are uniformly
picked from [�0.3, 0.3] and [0.7, 1.3]. To perform contrast
augmentation, we compute the mean pixel values c̄ of each
image channel c, then adjust c to (c� c̄)⇥ ⇣+ c̄, where ⇣ is a
contrast factor uniformly picked from [0.7, 1.3]. The brightness
augmentation is implemented by adding a brightness offset to

each of the RGB channels of an image, which is randomly
picked from [�0.1, 0.1].

C. Learning details
Different learning schedules are employed for fine-tuning

the FN2-ft-stereo model and for training the refinement net-
work. In the finetuning step, thanks to the pre-trained model,
a shorter learning schedule can be adopted with an initial
learning rate set to 0.0001 for the first 500 epochs. The
learning rate is then decreased by half every 200 epochs.
For the training of the refinement network which is randomly
initialized, the schedule is longer with an initial learning rate
of 0.0001 for the first 1200 epochs. The learning rate is then
divided by 2 every 200 epochs. We use the Adam optimizer
[39], and becaused of the limited GPU memory, a batch size of
4 is used. Tensorflow [40] is used to implement our network.
It takes about 2 days to train our network with a 15G GPU
NVIDIA P-100.

VII. EXPERIMENTAL RESULTS

A. Setup
To validate the effectiveness of our proposed framework,

we conduct experiments on both public and self-rendered
synthetic datasets and with real light fields.

1) Synthetic Dataset: For sake of comparison, we use the
synthetic light fields of the HCI datasets [20] [35] and keep
the same test light fields as in [6]: Stilllife, Buddha, Butterfly,
MonasRoom from [35] and Boxes, Cotton, Dino, Sideboard
from [20]. The 12 additional scenes of [20] are added in the
training set as detailed in Section V.

We also evaluated the proposed framework using our own
sparse light fields datasets (that will be made publicly available
at the time of the paper publication). Four test light fields
Furniture, Lion, Toy bricks, Electro devices are used for eval-
uation. The scene Lion contains a single object and the other
three scenes contain multiple objects.

2) Real Light Fields: We have also tested our frame-
work with dense real light fields, using datasets captured by
plenoptic Lytro Illum cameras (we used light fields in the
INRIA [41] and EPFL [42] datasets). Compared with synthetic
datasets, light fields captured by plenoptic cameras are more
challenging due to the fact that the extracted views contain
noise and geometrical distortions. These real light fields have a
spatial resolution of 434⇥625 pixels and an angular resolution
of 15⇥ 15 views. Finally, experiments have been also carried
out for sparse real world light fields captured with wide
baseline camera arrays [43].

B. Impact of the anchors views
In contrary to other deep learning frameworks [17], [18],

our network is flexible with respect to the number and the
positions of the input views. Indeed, it is possible to arbitrarily
select a subset of light field views as anchor views.

Fig. 5 evaluates the percentage of pixels below a certain
error threshold for different strategies to select anchor views.
The higher is this percentage, more accurate is the estimation.
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Fig. 3: Visual comparison of the estimated disparity maps on center view.

Table 1: Quality evaluation of the estimated disparity maps on center view for dense LFs. The best results are marked in bold.
MSE*100 BadPix(0.01) BadPix(0.03) Q25

Light fields [2] [5] [11] [10] Ours [2] [5] [11] [10] Ours [2] [5] [11] [10] Ours [2] [5] [11] [10] Ours
StillLife 2.02 1.72 2.56 1.16 1.14 81.2 76.2 71.3 74.4 71.5 51.0 32.1 25.0 37.1 24.5 1.36 1.02 0.87 0.86 0.88
Buddha 1.13 0.97 0.82 0.40 0.46 57.7 41.2 34.9 51.3 25.8 24.4 14.8 12.3 13.4 6.6 0.51 0.34 0.31 0.52 0.28

MonasRoom 0.76 0.58 0.53 0.56 0.38 46.0 42.5 38.6 45.5 25.2 22.1 17.8 18.6 17.8 11.4 0.38 0.34 0.33 0.35 0.24
Butterfly 4.79 0.74 1.84 0.70 0.54 82.5 78.9 70.8 82.4 62.9 49.1 48.5 36.0 50.8 28.7 1.47 1.22 0.85 1.28 0.66

Boxes 14.15 8.23 12.71 10.05 12.48 72.7 62.3 65.8 83.6 60.5 45.5 28.1 37.7 57.1 32.8 0.89 0.62 0.68 1.54 0.55
Cotton 9.98 1.44 1.18 1.23 0.67 60.5 41.7 42.6 72.1 29.6 23.3 11.1 10.7 33.7 8.0 0.59 0.36 0.42 0.89 0.25
Dino 1.23 0.29 0.88 0.53 0.50 76.6 57.5 49.1 80.9 35.9 48.4 17.9 20.0 48.0 12.6 1.08 0.55 1.32 0.42 0.29

Sideboard 4.16 0.92 10.31 1.31 1.60 67.8 64.3 61.7 79.8 48.8 39.3 31.0 37.5 46.4 23.2 0.74 0.66 1.26 0.51 0.37
Average 4.78 1.86 3.85 1.99 2.22 68.1 58.1 54.4 71.2 45.0 37.9 25.2 24.7 38.0 18.5 0.88 0.64 0.62 0.80 0.44

Table 2
MSE*100 BadPix(0.01) BadPix(0.03) Q25

Light fields [1] [2] [3] [4] Ours [1] [2] [3] [4] Ours [1] [2] [3] [4] Ours [1] [2] [3] [4] Ours
StillLife 2.02 1.72 2.56 1.16 1.14 81.2 76.2 71.3 74.4 71.5 51.0 32.1 25.0 37.1 24.5 1.36 1.02 0.87 0.86 0.88
Buddha 1.13 0.97 0.82 0.40 0.46 57.7 41.2 34.9 51.3 25.8 24.4 14.8 12.3 13.4 6.6 0.51 0.34 0.31 0.52 0.28

MonasRoom 0.76 0.58 0.53 0.56 0.38 46.0 42.5 38.6 45.5 25.2 22.1 17.8 18.6 17.8 11.4 0.38 0.34 0.33 0.35 0.24
Butterfly 4.79 0.74 1.84 0.70 0.54 82.5 78.9 70.8 82.4 62.9 49.1 48.5 36.0 50.8 28.7 1.47 1.22 0.85 1.28 0.66

Boxes 14.15 8.23 12.71 10.05 12.48 72.7 62.3 65.8 83.6 60.5 45.5 28.1 37.7 57.1 32.8 0.89 0.62 0.68 1.54 0.55
Cotton 9.98 1.44 1.18 1.23 0.67 60.5 41.7 42.6 72.1 29.6 23.3 11.1 10.7 33.7 8.0 0.59 0.36 0.42 0.89 0.25
Dino 1.23 0.29 0.88 0.53 0.50 76.6 57.5 49.1 80.9 35.9 48.4 17.9 20.0 48.0 12.6 1.08 0.55 1.32 0.42 0.29

Sideboard 4.16 0.92 10.31 1.31 1.60 67.8 64.3 61.7 79.8 48.8 39.3 31.0 37.5 46.4 23.2 0.74 0.66 1.26 0.51 0.37
Average 4.78 1.86 3.85 1.99 2.22 68.1 58.1 54.4 71.2 45.0 37.9 25.2 24.7 38.0 18.5 0.88 0.64 0.62 0.80 0.44

Table 3: Quality evaluation of the estimated disparity maps
on center view for sparse LFs.

MSE BadPix(0.1) Q25
Light fields [11] [10] Ours [11] [10] Ours [11] [10] Ours
Furniture 1.94 0.38 0.78 41.3 61.3 22.0 2.52 6.17 1.10

Lion 0.87 0.08 0.15 59.5 21.4 8.0 4.47 2.51 0.61
Toy bricks 1.10 0.18 0.44 44.6 36.0 16.6 3.61 2.72 0.94

Electro devices 0.63 0.18 0.23 43.4 55.5 24.5 2.71 4.93 1.35
Average 1.14 0.21 0.40 47.2 43.6 17.8 3.33 4.08 1.00

We use the same evaluation metrics defined in [21, 22]. MSE is
mean-square-error, which penalizes large disparity errors on the
object boundary, whereas BadPix(↵) (the percentage of pixels
having an error superior to ↵, ↵ being set to small values) and
Q25 (the error value *100 at the 25th percentile of the disparity
estimates) measure the sub-pixel accuracy. Table 1 shows that
in terms of MSE, our method is on par with [5] and [10], and
better than other reference methods. In terms of BadPix(0.01),
BadPix(0.03) and Q25, our method outperforms all the reference
methods by a large margin. Moreover, unlike [2, 5, 10], the fact
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Furniture 1.94 0.38 0.78 41.3 61.3 22.0 2.52 6.17 1.10

Lion 0.87 0.08 0.15 59.5 21.4 8.0 4.47 2.51 0.61
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Table 3
MSE BadPix(0.1) Q25

Light fields [3] [4] Ours [3] [4] Ours [3] [4] Ours
Furniture 1.94 0.38 0.78 41.3 61.3 22.0 2.52 6.17 1.10

Lion 0.87 0.08 0.15 59.5 21.4 8.0 4.47 2.51 0.61
Toy bricks 1.10 0.18 0.44 44.6 36.0 16.6 3.61 2.72 0.94

Electro devices 0.63 0.18 0.23 43.4 55.5 24.5 2.71 4.93 1.35
Average 1.14 0.21 0.40 47.2 43.6 17.8 3.33 4.08 1.00

We use the same evaluation metrics defined in [21, 22]. MSE is
mean-square-error, which penalizes large disparity errors on the
object boundary, whereas BadPix(↵) (the percentage of pixels
having an error superior to ↵, ↵ being set to small values) and
Q25 (the error value *100 at the 25th percentile of the disparity
estimates) measure the sub-pixel accuracy. Table 1 shows that
in terms of MSE, our method is on par with [5] and [10], and
better than other reference methods. In terms of BadPix(0.01),
BadPix(0.03) and Q25, our method outperforms all the reference
methods by a large margin. Moreover, unlike [2, 5, 10], the fact
that our algorithm generates one disparity map per viewpoint,
without exploiting the color information of the views other than
the four corner views, is especially interesting for applications
such as light field view synthesis.

4.4. Sparse light fields
Our algorithm has been also evaluated on 4 sparse LFs in our
SLF dataset. An angular resolution of 3⇥3 is considered. In this
case, methods [2] and [5] are no longer relevant for comparison,
since they only rely on densely sampled views, and their perfor-
mance drops drastically when the baseline increases. In Table 3,
our algorithm performs significantly better than [11] and [10] in

Table	1.	Quality	evaluation	of	the	estimated	disparity	maps	on	center	view	for	dense	light	fields	 Table	2.	Quality	evaluation	on	center	view	for	sparse	light	fields	

Implementation	 details
v Data	augmentation	

- Geometrical	transformations	(e.g.	rotation,	
translation	or	scaling)	that	involve	data	
interpolation	 bring	extra	errors	in	the	ground	truth	
disparity	values.	
- Only	chromatic	transformation	has	been	applied	
by	changing	the	hue,	saturation,	 contrast	and	
brightness	of	training	images.	

v Learning	details
- Initial	learning	rate	set	to	0.0001	for	the	first	500	
epochs,	then	decreased	by	half	every	200	epochs.
- 2	days	of	training	with	a	15G	GPU	NVIDIA	P-100.	

Fusion	based	on	warping	error	mapsFine-tuned FlowNet 2.0	for	disparity estimation	
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Fig. 1. Overview of proposed framework. We take a 5 ⇥ 5 LF as example. The blue masked view, called target view L
t

, is the view for which we search
to estimate the disparity. Views in the yellow and red rectangles are respectively horizontal and vertical stereo views denoted L

s

. Target and stereo views are
used to compute the initial disparity maps d

i

using a fine-tuned FlowNet 2.0 model. Anchor views L
a

(in dark blue rectangles) can be any subset of views,
except the target view, that are used to compute the warping error for the fusion of initial estimates. A multi-scale residual learning network corrects fusion
artifacts and smoothes the final disparity map in a last refinement step.

estimate displacement both in x and y dimensions, whereas
DispNet-ft and FN2-ft-stereo focus on 1D (horizontal or
vertical displacements) estimation. On one hand, FN2-ft-stereo
performs better than FN2 and FN2-ft, which shows the ne-
cessity of concentrating on 1D estimation. In addition, FN2-
ft-stereo is significantly better than DispNet-ft, both being
finetuned using the same training set of stereo light field views.

Therefore, we choose to use FN2-ft-stereo for computing a
set Dt

Dt = {dst, s 2 S} (3)

of multiple estimates of disparity d

s
t between the target view

Lt and one of the stereo views Ls. As each of the candidates
d

s
t is normalized by the distance between the views in the

considered pair, it represents the amount of disparity between
the view and its immediate neighboring views. In the sequel,
we will denote this set of normalized disparity maps as Dt =
{d

k

, k = 1..K}, with K the number of candidate maps.

B. Fusion based on warping error maps

Although our FN2-ft-stereo model provides satisfying re-
sults for disparity estimation with stereo pairs, information in
other available views of the light field is not exploited. In this
subsection, we propose to fuse the candidate maps in Dt into a
single disparity map based on the error of warping the anchor
views La, a 2 A onto the target view.

Based on one of the disparity maps d

k

2 Dt, backward
warping is applied to project the anchor view La to the
target position t. The warped view is denoted e

L

k

a!t

. The

(a) FN2 (b) FN2-ft (c) DispNet-ft (d) FN2-ft-stereo

Fig. 2. Disparity estimation errors (display range between 0 and 1) using
different models: (a) FN2, (b) FN2-ft, (c) DispNet-ft and (d) FN2-ft-stereo.
The first row corresponds to the estimation errors using a stereo pair L2,2
and L2,8. On the second and third row, for FN2 and FN2-ft, the estimation
has been done between the views L5,5 and L8,8, and the horizontal (second
row) and vertical (third row) flow components are shown. Since DispNet-ft
and FN2-ft-stereo only take stereo pairs, the horizontal flows are estimated
between L5,5 and L5,8 (the second row), and the vertical flows are estimated
between L5,5 and L8,5 (the third row).

corresponding warping error e

a
k

is computed by summing on
the three R, G, B color channels:

8a 2 A, e

a
k

=
X

R,G,B

(L
t

� e
L

k

a!t)
2 (4)

Warping errors are then fused by taking into account all the
warped views e

L

k

a!t

with a 2 A. The fusion is performed

Drawbacks	and	Challenges
• Most	of	these	methods	are	designed	for	dense	view	sampling.	
• Very	few	methods	have	been	proposed	for	sparse	light	fields,	including	deep	learning	

approaches.
• EPI-based	methods	only	suitable	for	dense	light	field.
• Needs	of	prior	 knowledge	on	the	disparity	range.

for	occlusion-free	areas

for	non-overlapped	occlusion	zones
FN2:	

the	pre-trained	
FlowNet 2.0	

model	

FN2-ft:	
finetuned with	
no	constraint	on	
view	positions	

DispNet-ft and	FN2-ft-stereo:	
finetuned with	stereo	light	

field	views	only

1

Learn to estimate 4D disparity field with application
to light field reconstruction and compression

Xiaoran Jiang, Jinglei Shi, Christine Guillemot Fellow, IEEE

Abstract—This paper proposes a learning based algorithm for
disparity field estimation from a sparse subset of light field views.
Depth/Disparity is first estimated between stereo pairs among a
sparse subset of anchor views by using a fine-tuned FlowNet 2.0
network for 1D displacement prediction. These coarse estimates
are then fused by exploiting two photo-consistency errors defined
differently in occlusion and occlusion-free areas, and refined by
a Multi-view Stereo Refinement Network (MSRNet).

light field synthesis and compression based on disparity
estimation for light filed views via deep learning. This paper
proposes a learning based algorithm which enables to obtain
robust and accurate depth information from a sparsely sampled
light field views. Based on estimated depth maps on anchor views,
an occlusion-aware soft 3D reconstruction method is applied
to propagate either texture or depth information of the sparse
anchor views to densely sampled viewpoints. Experiments show
that our algorithm produces both high quality depth maps and
synthesized texture views.

Index Terms—Light fields, View synthesis, Compression, Depth
estimation, Deep learning

I. INTRODUCTION

L IGHT fields provide rich geometry description that en-
ables a variety of post-capture image applications such as

digital refocusing, view point change, scene depth estimation,
3D scene reconstruction, etc. However, for today’s light field
cameras, there is a built-in trade-off between the spatial
and angular resolution. This often leads to sparse sampling
in either of these two dimensions, which compromises the
final image resolution. To resolve this issue, view synthesis
approach handles the lack of angular sampling by interpolating
missing views based on a sparse set of known views. Among
them, DIBR (Depth Image based rendering) techniques require
accurate depth information of the captured scene, which is
often difficult when the number of viewpoints is limited.

L(n) = �1N (d̃(n), d(n)GT ) + �2G(d̃(n), d(n)GT ), (1)

II. RELATED WORKS

A. Disparity estimation for light fields
Accurate disparity estimation is crucial for DIBR methods.

Existing methods for depth estimation from light fields can
be classified into several main categories: methods based on
sub-aperture images (SAI), on epipolar plane images (EPI)
or on refocused images. The methods based on SAI compute
matches between the extracted views, assuming that they are
well rectified with a constant baseline [?], [11]. The authors

This work has been supported by the EU H2020 Research and Innovation
Programme under grant agreement No 694122 (ERC advanced grant CLIM).

in [?] use robust PCA to estimate the disparity which will
minimize the rank of the matrix containing all the views
warped on the center one. A method is described in [11]
which instead computes a cost volume based on the similarity
between sub-aperture images and the center view shifted at
sub-pixel locations to evaluate the matching cost of different
disparity labels. The authors in [?] apply an optical flow
estimator on a sequence of light field views along an angular
dimension to estimate several disparity maps which are then
aggregated to create a single disparity map which is then
converted into a depth map.

Another type of methods for plenoptic depth estimation uses
EPIs [?], [7]. Indeed, the slope of the line composed of the
corresponding pixel in an EPI is proportional to the depth
of the pixel [?]. The authors in [7] use structure tensors to
estimate the local slopes which are then regularized using a
variational labeling framework for global consistency, while a
spinning parallelogram operator is proposed in [?] to estimate
the slopes of these structures. A third category of methods
uses images in a focal stack and use defocus cues, possibly
combined with other measures, to estimate depth [8], [9]. This
relies on the assumption that in-focus points are projected at
the same spatial position in the different views.

B. Light field view synthesis and angular super-resolution
View synthesis, also termed “view interpolation” in some

context, has been an active research topic in stereo vision. For
light field cameras, particularly, view synthesis is a potential
remedy to mitigate the spatial / angular resolution dilemme.
Reducing the whole voluminous 4D light field data to a limited
number of views while maintaining satisfying reconstruction
quality also reveals to be interesting for efficient compression,
transmission and storage space saving.

For view interpolation, [7] requires estimating a disparity
map per novel view. However, the sampling density that the
algorithm needs to achieve optimal results is about nine views
in each angular dimension, and the performance degrades
drastically when the disparity between views becomes larger
than ±1 pixels.

Among learning-based methods, [12] constructs 3D-patches
by stacking 2D spatial patch slices in different sub-aperture
views, either being co-located or best matches across all views.
These highly redundant patch-volumes are projected to a
lower-dimensional space using Principal Component Analysis
(PCA) before that a linear matching function is learnt be-
tween LR (low resolution) and HR (high resolution) projected
patch-volumes for spatial super-resolution and between patch-
volumes of surrounding views for angular super-resolution.

Finetuned	
FlowNet	2.0

Finetuned	
FlowNet	2.0

Shared  
weights

Fusion	
via	mask	

Contour	
mask

!"#(%&,()

%&,*

+,-..

+-..

/

Stereo estimation Fusion RefinementLight field data

↓ 2,

2(,) 2
(3)

+

↓ 23 +

Anchor views

Vertical 
stereo views

Horizontal 
stereo views

Fusion	via
4-..

!"#

!"#5(
Fusion	via

+

+6(,)

!"#(%&,*)

%(,*

Multi-Stereo Refinement
Network (MSRNet)

+7%(,(

%(,* %&,*

%&,(

%&,(

%&,*

+77

%&,*

%&,*

%&,*

+6 (3)

4,-..

 Light	fields:	
• 4D:	Intersection	with 2	planes			LF(	u,	v,	s,	t)	
• 3D	scene geometry estimation	and	reconstruction	

approximated	binary	occlusion	mask

1

Learn to estimate 4D disparity field with application
to light field reconstruction and compression

Xiaoran Jiang, Jinglei Shi, Christine Guillemot Fellow, IEEE

Abstract—This paper proposes a learning based algorithm for
disparity field estimation from a sparse subset of light field views.
Depth/Disparity is first estimated between stereo pairs among a
sparse subset of anchor views by using a fine-tuned FlowNet 2.0
network for 1D displacement prediction. These coarse estimates
are then fused by exploiting two photo-consistency errors defined
differently in occlusion and occlusion-free areas, and refined by
a Multi-view Stereo Refinement Network (MSRNet).

light field synthesis and compression based on disparity
estimation for light filed views via deep learning. This paper
proposes a learning based algorithm which enables to obtain
robust and accurate depth information from a sparsely sampled
light field views. Based on estimated depth maps on anchor views,
an occlusion-aware soft 3D reconstruction method is applied
to propagate either texture or depth information of the sparse
anchor views to densely sampled viewpoints. Experiments show
that our algorithm produces both high quality depth maps and
synthesized texture views.

Index Terms—Light fields, View synthesis, Compression, Depth
estimation, Deep learning

I. INTRODUCTION

L IGHT fields provide rich geometry description that en-
ables a variety of post-capture image applications such as

digital refocusing, view point change, scene depth estimation,
3D scene reconstruction, etc. However, for today’s light field
cameras, there is a built-in trade-off between the spatial
and angular resolution. This often leads to sparse sampling
in either of these two dimensions, which compromises the
final image resolution. To resolve this issue, view synthesis
approach handles the lack of angular sampling by interpolating
missing views based on a sparse set of known views. Among
them, DIBR (Depth Image based rendering) techniques require
accurate depth information of the captured scene, which is
often difficult when the number of viewpoints is limited.
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II. RELATED WORKS

A. Disparity estimation for light fields
Accurate disparity estimation is crucial for DIBR methods.

Existing methods for depth estimation from light fields can
be classified into several main categories: methods based on
sub-aperture images (SAI), on epipolar plane images (EPI)
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or on refocused images. The methods based on SAI compute
matches between the extracted views, assuming that they are
well rectified with a constant baseline [?], [11]. The authors
in [?] use robust PCA to estimate the disparity which will
minimize the rank of the matrix containing all the views
warped on the center one. A method is described in [11]
which instead computes a cost volume based on the similarity
between sub-aperture images and the center view shifted at
sub-pixel locations to evaluate the matching cost of different
disparity labels. The authors in [?] apply an optical flow
estimator on a sequence of light field views along an angular
dimension to estimate several disparity maps which are then
aggregated to create a single disparity map which is then
converted into a depth map.

Another type of methods for plenoptic depth estimation uses
EPIs [?], [7]. Indeed, the slope of the line composed of the
corresponding pixel in an EPI is proportional to the depth
of the pixel [?]. The authors in [7] use structure tensors to
estimate the local slopes which are then regularized using a
variational labeling framework for global consistency, while a
spinning parallelogram operator is proposed in [?] to estimate
the slopes of these structures. A third category of methods
uses images in a focal stack and use defocus cues, possibly
combined with other measures, to estimate depth [8], [9]. This
relies on the assumption that in-focus points are projected at
the same spatial position in the different views.

B. Light field view synthesis and angular super-resolution

View synthesis, also termed “view interpolation” in some
context, has been an active research topic in stereo vision. For
light field cameras, particularly, view synthesis is a potential
remedy to mitigate the spatial / angular resolution dilemme.
Reducing the whole voluminous 4D light field data to a limited
number of views while maintaining satisfying reconstruction
quality also reveals to be interesting for efficient compression,
transmission and storage space saving.

For view interpolation, [7] requires estimating a disparity
map per novel view. However, the sampling density that the
algorithm needs to achieve optimal results is about nine views
in each angular dimension, and the performance degrades
drastically when the disparity between views becomes larger
than ±1 pixels.

Among learning-based methods, [12] constructs 3D-patches
by stacking 2D spatial patch slices in different sub-aperture
views, either being co-located or best matches across all views.
These highly redundant patch-volumes are projected to a
lower-dimensional space using Principal Component Analysis
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disparity labels. The authors in [?] apply an optical flow
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dimension to estimate several disparity maps which are then
aggregated to create a single disparity map which is then
converted into a depth map.

Another type of methods for plenoptic depth estimation uses
EPIs [?], [7]. Indeed, the slope of the line composed of the
corresponding pixel in an EPI is proportional to the depth
of the pixel [?]. The authors in [7] use structure tensors to
estimate the local slopes which are then regularized using a
variational labeling framework for global consistency, while a
spinning parallelogram operator is proposed in [?] to estimate
the slopes of these structures. A third category of methods
uses images in a focal stack and use defocus cues, possibly
combined with other measures, to estimate depth [8], [9]. This
relies on the assumption that in-focus points are projected at
the same spatial position in the different views.

B. Light field view synthesis and angular super-resolution

View synthesis, also termed “view interpolation” in some
context, has been an active research topic in stereo vision. For
light field cameras, particularly, view synthesis is a potential
remedy to mitigate the spatial / angular resolution dilemme.
Reducing the whole voluminous 4D light field data to a limited
number of views while maintaining satisfying reconstruction
quality also reveals to be interesting for efficient compression,
transmission and storage space saving.

For view interpolation, [7] requires estimating a disparity
map per novel view. However, the sampling density that the
algorithm needs to achieve optimal results is about nine views
in each angular dimension, and the performance degrades
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Existing methods for depth estimation from light fields can
be classified into several main categories: methods based on
sub-aperture images (SAI), on epipolar plane images (EPI)
or on refocused images. The methods based on SAI compute
matches between the extracted views, assuming that they are
well rectified with a constant baseline [?], [11]. The authors
in [?] use robust PCA to estimate the disparity which will
minimize the rank of the matrix containing all the views
warped on the center one. A method is described in [11]
which instead computes a cost volume based on the similarity
between sub-aperture images and the center view shifted at
sub-pixel locations to evaluate the matching cost of different
disparity labels. The authors in [?] apply an optical flow
estimator on a sequence of light field views along an angular
dimension to estimate several disparity maps which are then
aggregated to create a single disparity map which is then
converted into a depth map.

Another type of methods for plenoptic depth estimation uses
EPIs [?], [7]. Indeed, the slope of the line composed of the
corresponding pixel in an EPI is proportional to the depth
of the pixel [?]. The authors in [7] use structure tensors to
estimate the local slopes which are then regularized using a
variational labeling framework for global consistency, while a
spinning parallelogram operator is proposed in [?] to estimate
the slopes of these structures. A third category of methods
uses images in a focal stack and use defocus cues, possibly
combined with other measures, to estimate depth [8], [9]. This
relies on the assumption that in-focus points are projected at
the same spatial position in the different views.

B. Light field view synthesis and angular super-resolution

View synthesis, also termed “view interpolation” in some
context, has been an active research topic in stereo vision. For
light field cameras, particularly, view synthesis is a potential
remedy to mitigate the spatial / angular resolution dilemme.
Reducing the whole voluminous 4D light field data to a limited
number of views while maintaining satisfying reconstruction
quality also reveals to be interesting for efficient compression,
transmission and storage space saving.

For view interpolation, [7] requires estimating a disparity
map per novel view. However, the sampling density that the
algorithm needs to achieve optimal results is about nine views
in each angular dimension, and the performance degrades
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